

1 / 25

Add: 6/F, Building 107, No. A10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100015, CHINA, 100015
E-mail: request@supermap.com Website: www.supermap.com

Using Streaming Service

As the volume of real-time data grows dramatically, people want to display

real-time data on the mobile phones and PCs. SuperMap iServer 9D can meet this

need by providing the Streaming Service.

SuperMap iServer 9D supports protocols including WebSocket, TCP, HTTP,

and Kafka in its Streaming Service. Real-time data in the formats including CSV,

JSON, and GeoJSON is supported. The Spark Streaming distributed computing

framework is used to filter and analyze real-time data streams. The result data is

output and stored in the format of CSV, JSON, or GeoJSON. In iServer, the Data

Flow Service can be used to send the analysis result of real-time data to clients.

iServer Streaming Service provides the following analysis functions:

 Filter the real-time data by spatial or attribution relationship;

 Do property mapping on real-time data;

 Do geofencing on real-time data.

Configuring Streaming

Service

The steps are as follows:

Start Spark cluster

The Streaming Service is based on Spark Streaming distributed real time

calculating framework, so please start Spark cluster before configuring it. You can use

the built-in Spark in iServer to create cluster. Before creating cluster, you need to

2 / 25

Add: 6/F, Building 107, No. A10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100015, CHINA, 100015
E-mail: request@supermap.com Website: www.supermap.com

make necessary settings, please see Prepare the environment to use the built-in Spark

in iServer. You also can create Spark cluster service in other computer. After

specifying the Spark cluster, access iServer Manager>Cluster to set.

Compose the flow processing model

The Streaming Service uses the flow processing model as the service provider,

which specifies the necessary information when running service.

The process of spatio-temporal flow processing includes:

The real-time data processing model consists of four parts: Receiver, Filter,

Mapper, and Sender. Each part as a node, can be connected and merged together to

build a real-time data processing stream: Stream. In addition to Stream, there are

some auxiliary parameters as the operating conditions of the entire service, which is

stored together in the startup parameter type-Startup. The processing model is as

follows:

For how to compose the flow processing model, please refer to Compose the flow

processing model.

Publish and manage the Streaming Service

The completed stream processing model can be saved as a file with a suffix

of .streaming. It can be uploaded and published by iServer Quickly publish Streaming

Service. You can also write the contents of the stream processing model directly to

the "configuration information" and then publish.

After the successful publishing, enter the service management page http: // {ip}:

{port} / iserver / manager / services / {streamingServiceName} /, the service instance

3 / 25

Add: 6/F, Building 107, No. A10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100015, CHINA, 100015
E-mail: request@supermap.com Website: www.supermap.com

can be suspended, start, deleted and performed other operations. You can view the

basic information, running status, and configuration information for the service.

Streaming Service output

iServer provides Data Flow Service and iServer DataStore as the output of the

Streaming Service.

When the Streaming Service is published, it supports the simultaneous publishing

of the Data Flow Service, so that the result of the analysis can be sent to the client

instantly, and the client can receive it automatically through subscription. When you

compose a stream processing model, set the output data to Elasticsearch to output the

results of the analysis to the spatio-temporal database created by iServer DataStore.

Configuring Streaming

Service

The steps are as follows:

Start Spark cluster

The Streaming Service is based on Spark Streaming distributed real time

calculating framework, so please start Spark cluster before configuring it. You can use

the built-in Spark in iServer to create cluster. Before creating cluster, you need to

make necessary settings, please see Prepare the environment to use the built-in Spark

in iServer. You also can create Spark cluster service in other computer. After

specifying the Spark cluster, access iServer Manager>Cluster to set.

Compose the flow processing model

The Streaming Service uses the flow processing model as the service provider,

which specifies the necessary information when running service.

The process of spatio-temporal flow processing includes:

4 / 25

Add: 6/F, Building 107, No. A10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100015, CHINA, 100015
E-mail: request@supermap.com Website: www.supermap.com

The real-time data processing model consists of four parts: Receiver, Filter,

Mapper, and Sender. Each part as a node, can be connected and merged together to

build a real-time data processing stream: Stream. In addition to Stream, there are

some auxiliary parameters as the operating conditions of the entire service, which is

stored together in the startup parameter type-Startup. The processing model is as

follows:

For how to compose the flow processing model, please refer to Compose the flow

processing model.

Publish and manage the Streaming Service

The completed stream processing model can be saved as a file with a suffix

of .streaming. It can be uploaded and published by iServer Quickly publish Streaming

Service. You can also write the contents of the stream processing model directly to

the "configuration information" and then publish.

After the successful publishing, enter the service management page http: // {ip}:

{port} / iserver / manager / services / {streamingServiceName} /, the service instance

can be suspended, start, deleted and performed other operations. You can view the

basic information, running status, and configuration information for the service.

Streaming Service output

iServer provides Data Flow Service and iServer DataStore as the output of the

Streaming Service.

When the Streaming Service is published, it supports the simultaneous publishing

of the Data Flow Service, so that the result of the analysis can be sent to the client

instantly, and the client can receive it automatically through subscription. When you

5 / 25

Add: 6/F, Building 107, No. A10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100015, CHINA, 100015
E-mail: request@supermap.com Website: www.supermap.com

compose a stream processing model, set the output data to Elasticsearch to output the

results of the analysis to the spatio-temporal database created by iServer DataStore.

Configuring Streaming

Service

The steps are as follows:

Start Spark cluster

The Streaming Service is based on Spark Streaming distributed real time

calculating framework, so please start Spark cluster before configuring it. You can use

the built-in Spark in iServer to create cluster. Before creating cluster, you need to

make necessary settings, please see Prepare the environment to use the built-in Spark

in iServer. You also can create Spark cluster service in other computer. After

specifying the Spark cluster, access iServer Manager>Cluster to set.

Compose the flow processing model

The Streaming Service uses the flow processing model as the service provider,

which specifies the necessary information when running service.

The process of spatio-temporal flow processing includes:

The real-time data processing model consists of four parts: Receiver, Filter,

Mapper, and Sender. Each part as a node, can be connected and merged together to

build a real-time data processing stream: Stream. In addition to Stream, there are

some auxiliary parameters as the operating conditions of the entire service, which is

stored together in the startup parameter type-Startup. The processing model is as

follows:

6 / 25

Add: 6/F, Building 107, No. A10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100015, CHINA, 100015
E-mail: request@supermap.com Website: www.supermap.com

For how to compose the flow processing model, please refer to Compose the flow

processing model.

Publish and manage the Streaming Service

The completed stream processing model can be saved as a file with a suffix

of .streaming. It can be uploaded and published by iServer Quickly publish Streaming

Service. You can also write the contents of the stream processing model directly to

the "configuration information" and then publish.

After the successful publishing, enter the service management page http: // {ip}:

{port} / iserver / manager / services / {streamingServiceName} /, the service instance

can be suspended, start, deleted and performed other operations. You can view the

basic information, running status, and configuration information for the service.

Streaming Service output

iServer provides Data Flow Service and iServer DataStore as the output of the

Streaming Service.

When the Streaming Service is published, it supports the simultaneous publishing

of the Data Flow Service, so that the result of the analysis can be sent to the client

instantly, and the client can receive it automatically through subscription. When you

compose a stream processing model, set the output data to Elasticsearch to output the

results of the analysis to the spatio-temporal database created by iServer DataStore.

Writing a flow processing

7 / 25

Add: 6/F, Building 107, No. A10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100015, CHINA, 100015
E-mail: request@supermap.com Website: www.supermap.com

model

 Example

 Main parameters

 SparkParameter

 Stream

 Receiver

 Filter

 Mapper

 Sender

Example

The definition of flow processing model is written by JSON and mainly composed

of two parts: SparkParameter and Stream. SparkParameter is used to set the runtime

parameter for Spark Streaming, and Stream contains the parameters for the running

stream of real-time input data. Here is an example of a complete flow processing

model:

{

 "version": 9000,

 "sparkParameter": {

 "checkPointDir": "tmp",

 "interval": 5000

 },

 "stream": {

 "nodeDic": {

 "Filter": {// filter the current data to clean and arrange them

"filter": "[X] > [Y] && [X] > 20",

 "name": "Filter",

 "source": "",

 "description": "",

 "prevNodes": [// list of preorder nodes of the current node

"Xplus2"

],

"NextNodes": [// list of subsequent nodes of the current node

8 / 25

Add: 6/F, Building 107, No. A10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100015, CHINA, 100015
E-mail: request@supermap.com Website: www.supermap.com

 "SendToES"

],

 "className":

"com.supermap.bdt.streaming.filter.FeatureFilter"

 },

 "SetalliteReceiver": { //receive data

 "url": "https://api.wheretheiss.at/v1/satellites/25544",

 "reader": {

 "className":

"com.supermap.bdt.streaming.formatter.JsonFormatter"

 },

 "metadata": {

 "title": "",

 "epsg": -1000,

 "fieldInfos": [

 {

 "name": "X",

 "source": "longitude",

 "nType": "DOUBLE"

 },

 {

 "name": "Y",

 "source": "latitude",

 "nType": "DOUBLE"

 }

],

 "featureType": "POINT"

 },

 "name": "SetalliteReceiver",

 "source": "",

 "description": "",

 "prevNodes": [],

 "nextNodes": [

 "Xplus2"

],

 "className":

"com.supermap.bdt.streaming.receiver.HttpReceiver"

 },

 "SendToES": { //Output data

 "url": "192.168.12.122",

 "queueName": "streamingresult",

 "directoryPath": "IIS",

 "bitmap$0": false,

9 / 25

Add: 6/F, Building 107, No. A10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100015, CHINA, 100015
E-mail: request@supermap.com Website: www.supermap.com

 "formatter": {

 "separator": ",",

 "className":

"com.supermap.bdt.streaming.formatter.CSVFormatter"

 },

 "name": "SendToES",

 "source": "",

 "description": "",

 "prevNodes": [

 "Filter"

],

 "nextNodes": [],

 "className":

"com.supermap.bdt.streaming.sender.EsAppendSender"

 },

 "Xplus2": { //field mapping

 "fieldName": "X",

 "expression": "[X] * 2",

 "name": "Xplus2",

 "source": "",

 "description": "",

 "prevNodes": [

 "SetalliteReceiver"

],

 "nextNodes": [

 "Filter"

],

 "className":

"com.supermap.bdt.streaming.map.FeatureCalculateMapper"

 }

 }

 }

}

Main parameters

Refer to the example above to write a flow processing model. This section will

introduce the following parameters, to help you write a flow processing model

according to the actual configuration.

SparkParameter

10 / 25

Add: 6/F, Building 107, No. A10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100015, CHINA, 100015
E-mail: request@supermap.com Website: www.supermap.com

 checkPointDir: Sets the Save directory of the CheckPoint feature of Streamging. String

type.

 interval: int type. Sets the interval at which Streaming runs in milliseconds.

Stream

 nodeDic: the dictionary that holds the running nodes.

 StreamNode: node base class for runtime stream, which records the basic information

such as name, source, and description of the node, and the order in which the most

important node is running. Use prevNodes to record the list of nodes before the current

node, nextNodes to record the list of nodes after the current node. The vaules of

prevNodes and nextNodes are an array and each element of the array is the name of

each corresponding node; that is, each node can have more than one predecessor node

or more than one subsequent node. For Receiver node, prevNodes is empty; For Sender

node, nextNodes is empty. If a node has more than one predecessor node , then the

metadata of theses predecessor nodes must be the same; otherwise, the execution will

report errors.

Receiver

Inherited from StreamNode, as the entry of stream data processing, receiving data

from a variety of sources, including Socket, WebSocket, Http, file system, etc.

Receiver need to set metadata parameter to receive information. Receiver node

consists of three parts: their own description information such as name, source, etc .;

message metadata: metadata; message read format: reader.

Realtime data services support the following receive methods:

SocketReceiver: inherited from Receiver, used to receive Socket message. The

parameters to be specified are:

 ipAddress——String type. The IP address of the Socket service from

which SocketReceiver receives message.

 port—— int type, the port number of the Socket service

{

"ipAddress" : "127.0.0.1",

"port" : 9527,

"name" : "socketReceiver",

"source" : "Socket Receiver",

"description" : "Receive some message from socketServer",

"prevNodes" : [],

11 / 25

Add: 6/F, Building 107, No. A10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100015, CHINA, 100015
E-mail: request@supermap.com Website: www.supermap.com

"nextNodes" : [],

"className": "com.supermap.bdt.streaming.receiver.SocketReceiver "

}

MultiSocketReceiver: inherited from Receiver, while receiving multiple nodes of

the Socket message, the received message content must be the same. The parameters

to be specified are:

 servers——Array[String] type. Multiple service addresses to receive.

Each array object is an address, and the address and the port is separated by a

colon.

{

 "servers": [

 "192.168.1.1:9527",

 "192.168.1.1:9528",

 "192.168.1.2:9527"

],

 "name": "multiSocketReceiver",

 "source": "MultiSource Socket Receiver",

 "description": "Receive message from multi socket server",

 "prevNodes": [],

 "nextNodes": [],

"className":

"com.supermap.bdt.streaming.receiver.MultiSocketReceiver"

}

 SocketServerReceiver: inherited from Receiver, Socket server receiving node,

used as a server to receive other Socket customers to send the message. The

parameters to be specified are:

 Port: int type. The started listening port on the socket server.

{

 "port": 9527,

 "name": "socketServerReceiver",

 "source": "SocketServer Receiver",

 "description": "Receive message from socket client",

 "prevNodes": [],

 "nextNodes": [],

"className":

"com.supermap.bdt.streaming.receiver.SocketServerReceiver"

}

 WebSocketReceiver: inherited from Receiver, receive WebSocket message node.

The parameters to be specified are:

12 / 25

Add: 6/F, Building 107, No. A10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100015, CHINA, 100015
E-mail: request@supermap.com Website: www.supermap.com

 Url: String type. WebSocket service address.

{

 "url": "ws://192.168.1.1:9527/websocket ",

 "name": "webSocketReceiver",

 "source": "WebSocket Receiver",

 "description": "Receive message from websocket server",

 "prevNodes": [],

 "nextNodes": [],

 "className":

"com.supermap.bdt.streaming.receiver.WebSocketReceiver"

}

 TextFileReceiver: inherited from Receiver, monitor the specified directory, and

read the contents of the new file. The parameters to be specified are:

 directoryPath——directory of monitored files, such as HDFS directory:

hdfs:///data/; directory in Linux system: /user/share/data; directory in

Windows system: C:/data.

{

 "directoryPath": "'hdfs:///data/'",

 "name": "textFileReceiver",

 "source": "Text File Receiver",

 "description": "Listen new file in folder",

 "prevNodes": [],

 "nextNodes": [],

 "className": "com.supermap.bdt.streaming.receiver.TextFileReceiver"

}

 KafkaReceiver: A node that inherits from Receiver and receives kafka messages.

The parameters to be specified are:

 servers - String type. Server list. If there are multiple items, separate servers by commas,

and separate the ports with semicolons ";"

 topics ——Array [String] type. kafka topic array

 groupid——String type. kafka's groupID

 offset——String type. The location read by kafka. The default value is latest, that is, to

read the latest news

{ "servers": "192.168.1.1:9092, 192.168.1.2:9092,

192.168.1.3:9092 ,192.168.1.4:9092",

 "topics": [

13 / 25

Add: 6/F, Building 107, No. A10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100015, CHINA, 100015
E-mail: request@supermap.com Website: www.supermap.com

 "topic1",

 "topic2"

],

 "groupid": "groupId",

 "offset": "latest",

 "name": "kafkaReceiver",

 "source": "Kafka Receiver",

 "description": "Receive message from Kafka",

 "prevNodes": [],

 "nextNodes": [],

"className": "com.supermap.bdt.streaming.receiver.KafkaReceiver"

}

HttpReceiver: inherited from Receiver, a message node to receive HTTP.

Currently only the Get method of HTTP is supported.

 Url: String type. Http service address.

{

 "url": "https://api.wheretheiss.at/v1/satellites/25544",

 "name": "httpReceiver",

 "source": "HTTP Receiver",

 "description": "Get message from web",

 "prevNodes": [],

 "nextNodes": [],

 "className": "com.supermap.bdt.streaming.receiver.HttpReceiver"

}

JMSReceiver: A node that inherits from the Receiver, receives the JMS standard

protocol message, and receives messages such as ActiveMQ, RabbitMQ, and other

message middleware.

 url——JMS message service address

 port——int type. Message service port

 queueName ——String type Message Queue Name

 jdniName——String type. The JDNI name of the corresponding

message middleware. You need to find it from the official website of the

middleware

 username——String type. username

 password——String type. password

{

 "url": "192.168.1.1",

 "port": 9527,

 "queueName": "data",

14 / 25

Add: 6/F, Building 107, No. A10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100015, CHINA, 100015
E-mail: request@supermap.com Website: www.supermap.com

 "jdniName":

"org.apache.activemq.jndi.ActiveMQInitialContextFactory",

 "userName": "user",

 "password": "password",

 "name": "jmsReceiver",

 "source": "JMS Receiver",

 "description": "Receive message from JMS(Java Message Service) for

ActiveMQ",

 "prevNodes": [],

 "nextNodes": [],

"className": "com.supermap.bdt.streaming.receiver.JMSReceiver"

}

metadata

metadata is written in the Receiver parameter, which is the metadata of the

received message, used to describe the definition format of the message. The

following information need to be specified:

 title: The name of the metadata used to distinguish between other metadata. String

type.

 featureType: FeatureType class. The geographic feature type converted from the received

message, such as POINT, LINE, REGION, etc.

 epsg: int type. The Projected EPSG coding of metadata geographic elements.

 fieldInfos: field information converted from the message received. You need to specify:

o name: String type. Field name, unique identifier for the field

o source: String type. The position of the field in the original information which

determines from which position to parse the information. If the original information

is in CSV format, the value of source should be the field number in the CSV, such as,

"source": "4" represents the fifth field in the CSV data; If the original data is in json

format, then the value of source is the key of key-value-pair in json data.

o nType: FieldType type. Field type, such as: TEXT, DOUBLE, INT and so on.

reader

The content format of the received message, including CSV format, JSON format,

or GeoJson format.

15 / 25

Add: 6/F, Building 107, No. A10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100015, CHINA, 100015
E-mail: request@supermap.com Website: www.supermap.com

CSVFormatter: Indicates that the content of the received message is in CSV

format. You need to specify:

 separator: Specifies the delimiter, the default is a comma

"reader": {

 "separator": ",",

 "className": "com.supermap.bdt.streaming.formatter.CSVFormatter"

 }

JsonFormatter: The format of the received message content is JSON. Here is an

example:

"reader": {

 "className": "com.supermap.bdt.streaming.formatter.JsonFormatter"

 }

GeoJsonFormatter: The format of the received message content is GeoJSON. Here

is an example:

"reader": {

 "className": "com.supermap.bdt.streaming.formatter.JsonFormatter"

 }

Filter

Inherited from StreamNode, used to filter the current data, and cleaning and

sorting the data. You need to specify:

 filter: If you need to get the field value for logical operations, use the keyword [], such as

[ID]> 10. Multiple expressions can be used to connect directly with && (or) or || (or),

and use parentheses () to adjust the priority order, such as [ID]> 10 && ([X]> = 10 || [=

65.32). Note that the use of the keywords IN, MATCHES, EXISTS, ISNULL, together with

other expressions, must be enclosed in brackets, such as ([ID] IN 1,3,5,7,9) && [X]> 100.

Table 1 list of logical operators supported by the filter parameter

Operator Description

==

Is equal to (=)

This operator holds objects

whose attribute value is equal to

the specified value. For

example, [ID] = 3.

16 / 25

Add: 6/F, Building 107, No. A10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100015, CHINA, 100015
E-mail: request@supermap.com Website: www.supermap.com

Note: double type, the contrast

accuracy is10E-10. Must be used

carefully.

!=

Is not equal to (! =)

This operator retains objects

whose attribute value is not

equal to the specified value. For

example, [Name]! = "A".

Note: double type, the contrast

accuracy is10E-10. Must be used

carefully.

>

Greater than (>)

This operator retains objects

whose property value is greater

than the specified value. For

example, [Speed]> 50

>=

Greater than or equal to (> =)

This operator retains objects

whose property value is greater

than or equal to the specified

value. For example, [Speed]>=

50

<

Less than (<)

This operator retains an object

whose attribute value is less

than the specified value. For

example, [X] < 10.231

<=

Less than or equal to (<=)

This operator retains an object

whose attribute value is less

than or equal to the specified

value. For example, [Y] <= 40

IN

IN In the specified list

the operator retains the object

when the value of the specified

field exists in the

comma-separated list of values.

For example, [Code] IN

HK1,HK3,HK5

17 / 25

Add: 6/F, Building 107, No. A10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100015, CHINA, 100015
E-mail: request@supermap.com Website: www.supermap.com

MATCHES

MATCHES Regular Expression

Match

This operator holds the object

when the value of the specified

field matches the regular

expression. For example, [Code]

MATCHES "^ HK [135]”

Note: Regular expressions that

need to be matched need to be

enclosed in quotation marks

EXISTS

Whether the EXISTS field exists

When the specified field exists in

the received event scenario, the

operator holds the object. For

example, EXISTS [X].

ISNULL

ISNULL whether it is empty

When the specified field contains

a null value, the operator retains

the object. For example, [X]

ISNULL.

Mapper

Inherited from StreamNode, used to create field mapping and managing the fields,

including: field mapping, adding fields, deleting fields, field operations and geofence.

Add a field

 insertIndex——int type Location to add a field

 fieldname——String type The name of the field to add

 nType——SFieldType type The type of the field to add

 expression——String type The field value to add can be the value of an operation

expression for an existing field:

"insertMapper": {

 "insertIndex": 1,

 "fieldName": "XX",

 "nType": "DOUBLE",

 "expression": "[X] * 2",

18 / 25

Add: 6/F, Building 107, No. A10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100015, CHINA, 100015
E-mail: request@supermap.com Website: www.supermap.com

 "name": "insertMapper",

 "source": "Insert Field",

 "description": "Insert Field by X * 2",

 "prevNodes": [],

 "nextNodes": [],

 "className":

"com.supermap.bdt.streaming.map.FeatureInsertMapper"

 }

Delete field

 deleteFieldNames: delete the field name array

"deleteMapper": {

 "deleteFieldNames": [

 "F1",

 "F2"

],

 "name": "deleteMapper",

 "source": "delete Field",

 "description": "delete Field F1 and F2,

 "prevNodes": [],

 "nextNodes": [],

 "className":

"com.supermap.bdt.streaming.map.FeatureDeleteMapper"

 }

Field mapping

 srcToDesIndexPair: the correspondence between the field in the source data (the serial

number of the field in the stream) and the name

 srcToDesNamePair: the correspondence between the field name and the new

name

"mapMaper": {

 "srcToDesNamePair": {

 "ID": "newID_Name",

 "Y": "newY_Name",

 "X": "newX_Name"

 },

 "srcToDesIndexPair": {

 "ID": 0,

 "Y": 2,

19 / 25

Add: 6/F, Building 107, No. A10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100015, CHINA, 100015
E-mail: request@supermap.com Website: www.supermap.com

 "X": 1

 },

 "name": "mapMaper",

 "source": "Map Fields",

 "description": "Map Fields with new name and index",

 "prevNodes": [],

 "nextNodes": [],

 "className":

"com.supermap.bdt.streaming.map.FeatureMapMapper"

 }

Field operation

 fieldName: The target field name

 expression: The expression of the field

"calculateMapper": {

 "fieldName ": Fcal,

 "expression": "[X] * 2",

 "name": "calculateMapper",

 "source": "calculate Field",

 "description": "calculate Field by X * 2",

 "prevNodes": [],

 "nextNodes": [],

 "className":

"com.supermap.bdt.streaming.map.FeatureCalculateMapper "

 }

Geofence

 connection: The source of the geofence object.

o type——String type. Datasource type

o Info——Array[DsInfo] type. Datasource connection information.

o server: The data server

o datasetNames: Array [String] type. The dataset name used for the geofence

 fenceName——String type. The Name field of the object that is within the geofence.

 fenceID——String type. The ID field of the object that is within the geofence. That is, the

field that uniquely identifies the object.

 withinFieldName——String type. The field name of the new field, which is used to

record whether the current object is in the geographic fence.

20 / 25

Add: 6/F, Building 107, No. A10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100015, CHINA, 100015
E-mail: request@supermap.com Website: www.supermap.com

 statusFieldName——String type. The field name of the new field, which is used to record

whether the current object's state is entering the geo-fence or leaving the geo-fence.

"GeoFenceMapper": {

 "connection": {

 "type": "udb",

 "info": [

 {

 "server": "Z: \\airport.udb",

 "datasetNames": [

 "airports_40"

]

 }

]

 },

 "fenceName": "NAME",

 "fenceID": "SmID",

 "withinFieldName": "geoWithin",

 "statusFieldName": "geoStatus",

 "name": "GeoFenceMapper",

 "source": "Geomark Transformation",

 "description": "",

 "prevNodes": [

 "SocketReceiver"

],

 "nextNodes": [

 "GeoJsonSocketSender",

 "FenceWithinFilterOut",

 "FenceWithinFilterIn"

],

 "className": "com.supermap.bdt.streaming.map.GeoTaggerMapper"

 }

Sender

Inherited from StreamNode, as exit for stream data processing, sending data

outwards. Includes:

 EsAppendSender

 EsUpdateSender

21 / 25

Add: 6/F, Building 107, No. A10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100015, CHINA, 100015
E-mail: request@supermap.com Website: www.supermap.com

 FileSender

 JMSSender

 SenderBase

 SMSSender

 SocketClientSender

 SocketServerSender

 WebSocketClientSender

 WebSocketTool

Take the example of the commonly used WebSocket protocol, the configuration

of sending data is shown as follows:

"webSocketSender": {

 "path": "ws://127.0.0.1/data",

 "name": "webSocketSender",

 "source": "WebSocket Sender",

 "description": "Send message to WebSocket Server",

 "prevNodes": [],

 "nextNodes": [],

 "className":

"com.supermap.bdt.streaming.sender.WebSocketClientSender"

 }

Take outputting to ElasticSearch as an example:

 "ESSender": {

 "url": "192.168.168.33",

 "queueName": "aircondition",

 "directoryPath": "test1",

 "bitmap$0": false,

 "formatter": {

 "className":

"com.supermap.bdt.streaming.formatter.GeoJsonFormatter"

 },

 "name": "ESSender",

 "source": "ES sender

 "description": "",

 "prevNodes": [

 "TextFileReceiverJson"

],

22 / 25

Add: 6/F, Building 107, No. A10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100015, CHINA, 100015
E-mail: request@supermap.com Website: www.supermap.com

 "nextNodes": [],

 "className":

"com.supermap.bdt.streaming.sender.EsAppendSender"

 }

With the example settings above, you can output the result of the analysis of the

data to the spatio-temporal database created by iServer DataStore.

After the flow processing model is written, you can save the file as a file with a

suffix of .streaming, or you can publish it directly into the "configuration information"

when you Publish the Streaming Service Quickly.

Configuring Streaming

Service

The steps are as follows:

Start Spark cluster

The Streaming Service is based on Spark Streaming distributed real time

calculating framework, so please start Spark cluster before configuring it. You can use

the built-in Spark in iServer to create cluster. Before creating cluster, you need to

make necessary settings, please see Prepare the environment to use the built-in Spark

in iServer. You also can create Spark cluster service in other computer. After

specifying the Spark cluster, access iServer Manager>Cluster to set.

Compose the flow processing model

The Streaming Service uses the flow processing model as the service provider,

which specifies the necessary information when running service.

The process of spatio-temporal flow processing includes:

23 / 25

Add: 6/F, Building 107, No. A10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100015, CHINA, 100015
E-mail: request@supermap.com Website: www.supermap.com

The real-time data processing model consists of four parts: Receiver, Filter,

Mapper, and Sender. Each part as a node, can be connected and merged together to

build a real-time data processing stream: Stream. In addition to Stream, there are

some auxiliary parameters as the operating conditions of the entire service, which is

stored together in the startup parameter type-Startup. The processing model is as

follows:

For how to compose the flow processing model, please refer to Compose the flow

processing model.

Publish and manage the Streaming Service

The completed stream processing model can be saved as a file with a suffix

of .streaming. It can be uploaded and published by iServer Quickly publish Streaming

Service. You can also write the contents of the stream processing model directly to

the "configuration information" and then publish.

After the successful publishing, enter the service management page http: // {ip}:

{port} / iserver / manager / services / {streamingServiceName} /, the service instance

can be suspended, start, deleted and performed other operations. You can view the

basic information, running status, and configuration information for the service.

Streaming Service output

iServer provides Data Flow Service and iServer DataStore as the output of the

Streaming Service.

When the Streaming Service is published, it supports the simultaneous publishing

of the Data Flow Service, so that the result of the analysis can be sent to the client

instantly, and the client can receive it automatically through subscription. When you

compose a stream processing model, set the output data to Elasticsearch to output the

results of the analysis to the spatio-temporal database created by iServer DataStore.

24 / 25

Add: 6/F, Building 107, No. A10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100015, CHINA, 100015
E-mail: request@supermap.com Website: www.supermap.com

Configuring Streaming

Service

The steps are as follows:

Start Spark cluster

The Streaming Service is based on Spark Streaming distributed real time

calculating framework, so please start Spark cluster before configuring it. You can use

the built-in Spark in iServer to create cluster. Before creating cluster, you need to

make necessary settings, please see Prepare the environment to use the built-in Spark

in iServer. You also can create Spark cluster service in other computer. After

specifying the Spark cluster, access iServer Manager>Cluster to set.

Compose the flow processing model

The Streaming Service uses the flow processing model as the service provider,

which specifies the necessary information when running service.

The process of spatio-temporal flow processing includes:

The real-time data processing model consists of four parts: Receiver, Filter,

Mapper, and Sender. Each part as a node, can be connected and merged together to

build a real-time data processing stream: Stream. In addition to Stream, there are

some auxiliary parameters as the operating conditions of the entire service, which is

stored together in the startup parameter type-Startup. The processing model is as

follows:

25 / 25

Add: 6/F, Building 107, No. A10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100015, CHINA, 100015
E-mail: request@supermap.com Website: www.supermap.com

For how to compose the flow processing model, please refer to Compose the flow

processing model.

Publish and manage the Streaming Service

The completed stream processing model can be saved as a file with a suffix

of .streaming. It can be uploaded and published by iServer Quickly publish Streaming

Service. You can also write the contents of the stream processing model directly to

the "configuration information" and then publish.

After the successful publishing, enter the service management page http: // {ip}:

{port} / iserver / manager / services / {streamingServiceName} /, the service instance

can be suspended, start, deleted and performed other operations. You can view the

basic information, running status, and configuration information for the service.

Streaming Service output

iServer provides Data Flow Service and iServer DataStore as the output of the

Streaming Service.

When the Streaming Service is published, it supports the simultaneous publishing

of the Data Flow Service, so that the result of the analysis can be sent to the client

instantly, and the client can receive it automatically through subscription. When you

compose a stream processing model, set the output data to Elasticsearch to output the

results of the analysis to the spatio-temporal database created by iServer DataStore.

